7 resultados para Quimiocinas CXC

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vitro and in animal models, APE1, OGG1, and PARP-1 have been proposed as being involved with inflammatory response. In this work, we have investigated if the SNPs APE1 Asn148Glu, OGG1 Ser326Cys, and PARP-1 Val762Ala are associated to meningitis and also developed a system to enable the functional analysis of polymorphic proteins. Patients with bacterial meningitis (BM), aseptic meningitis (AM) and controls (non-infected) genotypes were investigated by PIRA-PCR or PCR-RFLP. DNA damages were detected in genomic DNA by Fpg treatment. IgG and IgA were measured from plasma and the cytokines and chemokines were measured from cerebrospinal fluid samples using Bio-Plex assays. The levels of NF-κB and c-Jun were measured in CSF by dot blot assays. A significant (P<0.05) increase in the frequency of APE1 148Glu allele in BM and AM patients was observed. A significant increase in the genotypes Asn/Asn in control group and Asn/Glu in BM group was also found. For the SNP OGG1 Ser326Cys, the genotype Cys/Cys was more frequent (P<0.05) in BM group. The frequency of PARP-1 Val/Val genotype was higher in control group (P<0.05). The occurrence of combined SNPs increased significantly in BM patients, indicating that these SNPs may be associated to the disease. Increasing in sensitive sites to Fpg was observed in carriers of APE1 148Glu allele or OGG1 326Cys allele, suggesting that SNPs affect DNA repair activity. Alterations in IgG production were observed in the presence of SNPs APE1Asn148Glu, OGG1Ser326Cys or PARP-1Val762Ala. Reductions in the levels ofIL-6, IL-1Ra, MCP-1/CCL2and IL-8/CXCL8 were observed in the presence of APE1148Glu allele in BM patients, however no differences were observed in the levels of NF-κB and c-Jun considering genotypes and analyzed groups. Using APE1 as model, a system to enable the analysis of cellular effects and functional characterization of polymorphic proteins was developed using strategies of cloning APE1 cDNA in pIRES2-EGFP vector, cellular transfection of the construction obtained, siRNA for endogenous APE1 and cellular cultures genotyping. In conclusion, we obtained evidences of an effect of SNPs in DNA repair genes on the regulation of immune response. This is a pioneering work in the field that shows association of BER variant enzymes with an infectious disease in human patients, suggesting that the SNPs analyzed may affect immune response and damage by oxidative stress level during brain infection. Considering these data, new approaches of functional characterization must be developed to better analysis and interactions of polymorphic proteins in response to this context

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activation of the kynurenine (KYN) pathway (KP) by modulators of immune system has been observed during several neurological diseases. Here we assessed the association of chemo-/cytokine levels with the concentration of KP metabolites in cerebrospinal fluid (CSF) and plasma samples from patients with bacterial meningitis (BM). All samples were collected from 42 patients diagnosed with acute bacterial meningitis (ABM), aseptic meningitis, tuberculous meningitis and patients without infection neurological disorders. CSF and plasma concentration of metabolites from the KP was assessed by high pressure liquid chromatography (HPLC) and cytokines and chemokines by Bio-plex 200 suspension array system. Concentrations of the KP metabolites KYN and kynurenic acid (KYNA) were significantly higher in CSF of patients with ABM compared to other groups. Tryptophan (TRP), anthranilic acid (AA), 3-hydroxykynurenine (3HK) and 3-hydroxyanthranilic acid (3HAA) did not show statistical significance, although some of them presented a good accumulation during ABM. The expression of TNF-alpha, IL-6, IL-1beta, IFN-gamma, IL-10, IL-1 receptor antagonist (IL-1Ra), MIP-1alpha, MIP-1beta, MCP-1 and G-CSF was about 100-fold higher in CSF from ABM patients than other infected groups. In all CSF and plasma samples, the concentration of IL-2, IL-12(p70), IL-4, IL-8 and GM-CSF was not significant. ABM still showed significant concentrations of IL-6, IL-10, IL-1Ra and MCP-1 in plasma samples. Based on the comparison of KP metabolites concentrations between plasma and CSF samples we conclude that the activation of the tryptophan pathway upon BM occurs within the brain. This increase in KP metabolites is most due to activation of the KP by molecules as IFN-gamma and TNF-alpha in response to infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Base excision repair (BER) proteins has been associated with functions beyond DNA repair. Apurynic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein involved in a plethora of cellular activities, such as redox activation of transcription factors, RNA processing and DNA repair. Some studies have described the action of the protein 8-oxoguanine (OGG1) in correcting oxidized lesions in promoters as a step in the transcription of pro-inflammatory cytokines. Despite being especially important in redox activation of transcription factors such as nuclear factor κB (NF-κB) and AP- 1, the repair activity of APE1 has not yet been associated with the inflammatory response. In this study, experimental and bioinformatic analysis approaches have been used to investigate the relationship between inhibition of the repair of abasic sites in DNA by MX, a synthetic molecule designed to inhibt the repair activity of APE1, and the modulation of the inflammatory response. The results showed that treatment of monocytes with lipopolysaccharide (LPS) and MX reduced the expression of cytokines, chemokines and toll-like receptors, and negatively regulated biological immune processes, as macrophages activation, and NF-κB and tumor necrosis factor (TNF-α) and interferon pathways, without inducing cell death. The transcriptomic analysis suggests that LPS/MX treatment induces mitochondrial dysfunction, endoplasmic reticulum stress and activation of autophagy pathways, probably activated by impairment of cellular energy and/or the accumulation of nuclear and mitochondria DNA damage. Additionally, it is proposed that the repair activity of APE1 is required for transcription of inflammatory genes by interaction with abasic sites at specific promoters and recruitment of transcriptional complexes during inflammatory signaling. This work presents a new perspective on the interactions between the BER activity and the modulation of inflammatory response, and suggests a new activity for APE1 protein as modulator of the immune response in a redox-independent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kidney transplantation is the best treatment for patients who have lost kidney function. Renal transplant patients require accurate immunosuppressive drugs to prevent rejection. In this process T helper cells of the immune system perform key role in the immune response to the graft, and recently the Th17 cells has been investigated by production of IL-17 potent proinflammatory cytokine whose role in the rejection has also been described. Increased of Th17 cell expression has an important association with the development of rejection in renal microenvironment, however the likely mechanism is not well understood. This study aimed to evaluate the Th17 response from the influence of the chemotactic axis CCR6/CCL20 and genetic variants in IL-17 and IL-17RA. We conducted a case-control study involving 148 patients transplanted at the University Hospital Onofre Lopes/UFRN in which assessed by immunohistochemistry protein expression of IL-17 and chemokines CCR6/CCL20 and by PCR-RFLP genetic variants in IL17A and IL17RA. Our results showed no influence of genetic polymorphisms on the outcome of the graft or the protein expression of IL-17. In renal graft microenvironment found several sources producing IL-17: tubular epithelial cells, glomerular cells, neutrophils and cell interstitial infiltration, in turn the expression of chemotactic axis CCR6/CCL20 was restricted to the tubular epithelium cells. There was a slight positive linear correlation between the presence of IL-17 and expression of chemotactic axis CCR6/CCL20 in the microenvironment of renal graft. Therefore, we believe that, combined with our results, further studies with increased "n" sample and greater control over the variables involved in obtaining the renal specimen, can determine more clearly the influence of chemotactic axis CCR6 / CCL20 and polymorphisms in cytokines related to Th17 profile on the control of this cell subtype response in rejection processes to renal allograft.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vitro and in animal models, APE1, OGG1, and PARP-1 have been proposed as being involved with inflammatory response. In this work, we have investigated if the SNPs APE1 Asn148Glu, OGG1 Ser326Cys, and PARP-1 Val762Ala are associated to meningitis and also developed a system to enable the functional analysis of polymorphic proteins. Patients with bacterial meningitis (BM), aseptic meningitis (AM) and controls (non-infected) genotypes were investigated by PIRA-PCR or PCR-RFLP. DNA damages were detected in genomic DNA by Fpg treatment. IgG and IgA were measured from plasma and the cytokines and chemokines were measured from cerebrospinal fluid samples using Bio-Plex assays. The levels of NF-κB and c-Jun were measured in CSF by dot blot assays. A significant (P<0.05) increase in the frequency of APE1 148Glu allele in BM and AM patients was observed. A significant increase in the genotypes Asn/Asn in control group and Asn/Glu in BM group was also found. For the SNP OGG1 Ser326Cys, the genotype Cys/Cys was more frequent (P<0.05) in BM group. The frequency of PARP-1 Val/Val genotype was higher in control group (P<0.05). The occurrence of combined SNPs increased significantly in BM patients, indicating that these SNPs may be associated to the disease. Increasing in sensitive sites to Fpg was observed in carriers of APE1 148Glu allele or OGG1 326Cys allele, suggesting that SNPs affect DNA repair activity. Alterations in IgG production were observed in the presence of SNPs APE1Asn148Glu, OGG1Ser326Cys or PARP-1Val762Ala. Reductions in the levels ofIL-6, IL-1Ra, MCP-1/CCL2and IL-8/CXCL8 were observed in the presence of APE1148Glu allele in BM patients, however no differences were observed in the levels of NF-κB and c-Jun considering genotypes and analyzed groups. Using APE1 as model, a system to enable the analysis of cellular effects and functional characterization of polymorphic proteins was developed using strategies of cloning APE1 cDNA in pIRES2-EGFP vector, cellular transfection of the construction obtained, siRNA for endogenous APE1 and cellular cultures genotyping. In conclusion, we obtained evidences of an effect of SNPs in DNA repair genes on the regulation of immune response. This is a pioneering work in the field that shows association of BER variant enzymes with an infectious disease in human patients, suggesting that the SNPs analyzed may affect immune response and damage by oxidative stress level during brain infection. Considering these data, new approaches of functional characterization must be developed to better analysis and interactions of polymorphic proteins in response to this context